MTH 310 HW 8 Solutions

April 2, 2016

Section 4.4, Problem 1

Find polynomials $p(x) \in \mathbb{Z}_{2}[x]$ and $q(x) \in \mathbb{Z}_{3}[x]$ that induce the zero function in their respective fields.
Answer. If $p(x)=x^{2}+x, p(0)=0$ and $p(1)=0$ so p induces the zero function on \mathbb{Z}_{2}. Similarly if $q(x)=x^{3}-x$ then in $\mathbb{Z}_{3} q(0)=q(1)=q(2)=0$.

Section 4.4, Problem 5

Let \mathbb{F} be a field. Show $(x-1) \mid a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ if and only if $a_{n}+\ldots+a_{1}+a_{0}=0$.
Answer. Assume $(x-1) \mid a_{n} x^{n}+\ldots+a_{1} x+a_{0}$. Then for some polynomial $q(x) \in \mathbb{F}[x],(x-$ 1) $q(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$. Therefore $a_{n}+\ldots+a_{1}+a_{0}=(1-1) q(1)=0$.

Assume $a_{n}+\ldots+a_{1}+a_{0}=0$. Then if $p(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}, p(1)=0$, so $(x-1) \mid a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ by The Factor Theorem.

Section 4.5, Problem 2

Show that if p is prime then $\sqrt{p} \notin \mathbb{Q}$.
Answer. By definition, \sqrt{p} is the positive element $x \in \mathbb{R}$ such that $x^{2}=p$. Therefore $x^{2}-p=0$. This is a polynomial with integer coefficients, so the rational root theorem applies which says that if $x \in \mathbb{Q}, x \in\{1,-1, p,-p\}$ since p is prime. Therefore since $(\pm p)^{2}-p \neq 0 \neq(\pm 1)^{2}-p, x \notin \mathbb{Q}$.

